Name:

Chapter 7: Chemical Quantities

Homework was checked against the key with wrong answers corrected.

Parent Signature: \qquad
Each numbered question is worth 1 point except as noted. Total possible $=44$ points

Section 7.1

1. What is the mass of 0.50 bushel of apples? 1 dozen apples $=2.0 \mathrm{~kg}$ apples $=0.20 \mathrm{bushel}(0.5)$
2. Assume that a variety of apples has eight seeds in each. How many apple seeds are in 14 kg of apples? (0.5)
3. How many moles is 2.80×10^{24} atoms of silicon? (0.5)
4. How many molecules is 0.360 mol of water? (0.5)
5. How many atoms are there in $1.14 \mathrm{~mol} \mathrm{SO}_{3}$? (0.5)
6. How many moles are there in 4.65×10^{24} molecules of NO_{2} ? (0.5)
7. Find the gram molecular mass of each compound. (2)
a. $\mathrm{C}_{2} \mathrm{H}_{6}$
b. PCl_{3}
c. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
d. $\mathrm{N}_{2} \mathrm{O}_{5}$
8. Calculate the gram formula mass of each ionic compound. (1.5)
a. $\mathrm{K}_{2} \mathrm{O}$
b. CaSO_{4}
c. CuI_{2}
9. Find the gram formula mass of each compound. (1.5)
a. barium fluoride
b. strontium chloride
c. skip
d. aluminum sulfite
10. Describe the relationship between Avogadro's number and one mole of any substance.
11. How many oxygen atoms are in a representative particle of each substance?
a. ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, a fertilizer
b. acetylsalicylic acid $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}\right)$, the fever-reducing compound aspirin?
c. ozone $\left(\mathrm{O}_{3}\right)$, a disinfectant
d. nitroglycerine $\left(\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}\right)$, an explosive
12. How many moles is each of the following? (2)
a. 1.50×10^{23} molecules NH_{3} (Find moles of NH_{3}.)
b. 1 billion $\left(1 \times 10^{9}\right)$ molecules O_{2} (Find moles of O_{2}.)
c. 6.02×10^{22} molecules Br_{2} (Find moles of Br_{2}.)
d. 4.81×10^{24} atoms Li
13. Distinguish among gram atomic mass, gram molecular mass, and gram formula mass.

Section 7.2

16. Find the mass, in grams, of each. (1.5)
a. 3.32 mol K
b. $4.52 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{20} \mathrm{H}_{42}$
c. $0.0112 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3}$
17. Calculate the mass, in grams of 2.50 mol of each substance. (2)
a. sodium sulfate
b. iron(II) hydroxide
18. Find the number of moles in each quantity. (1.5)
a. $3.70 \times 10^{-1} \mathrm{~g} \mathrm{~B}$
b. $27.4 \mathrm{~g} \mathrm{TiO}_{2}$
c. $847 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
19. What is the volume at STP of these gases?
a. $3.20 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}$
b. $0.960 \mathrm{~mole}_{\mathrm{CH}}^{4}$
c. $3.70 \mathrm{~mol} \mathrm{~N}_{2}$
20. Assuming STP, how many moles are in these volumes?
a. $67.2 \mathrm{~L} \mathrm{SO}_{2}$
b. 0.880 L He
c. $1.00 \times 10^{3} \mathrm{LC}_{2} \mathrm{H}_{6}$
21. A gaseous compound composed of sulfur and oxygen that is linked to the formation of acid rain has a density of $3.58 \mathrm{~g} / \mathrm{L}$ at STP. What is the molar mass of this gas?
22. What is the density of krypton gas at STP? (Hint: Krypton is a noble gas.)
23. Find the mass in grams of each quantity. (2)
a. 0.720 mol Be
b. $2.40 \mathrm{~mol} \mathrm{~N}_{2}$
c. $0.160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$
d. $5.08 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
24. Calculate the following. (3)
a. The number of molecules in $60.0 \mathrm{~g} \mathrm{NO}_{2}$
b. The volume, in liters, of 3.24×10^{22} molecules Cl_{2} gas at STP
c. The mass, in grams, of $18.0 \mathrm{~L} \mathrm{CH}_{4}$ gas at STP
25. Would three balloons, each containing the same number of molecules of a different gas at STP, have the same mass or the same volume? Explain.
26. Find the number of moles in each quantity. (2)
a. 5.00 g hydrogen molecules
b. $0.000264 \mathrm{~g} \mathrm{Li}_{2} \mathrm{HPO}_{4}$
c. 187 g Al
d. $333 \mathrm{~g} \mathrm{SnF}_{2}$

Section 7.3

29. Calculate the percent composition for each compound. (2)
a. When 9.03 g Mg combines completely with 3.48 g N to form a compound.
b. When 29.0 g Ag combines completely with 4.30 g S to form a compound.
30. When a 14.2 g sample of mercury(II) oxide is decomposed into its elements by heating, 13.2 g Hg is obtained. What is the percent composition of this compound?
31. Calculate the percent composition of these compounds. Give answers to nearest 0.01%. (2)
a. ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
b. sodium bisulfate (NaHSO
32. Calculate the percent nitrogen in these common fertilizers. Give answers to the nearest 0.01%. (3)
a. $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
b. NH_{3}
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
33. Using results from Problem 31, calculate the mass of hydrogen in each of the following. a. $350 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$
b. 20.3 g NaHSO 4
34. Using results from Problem 32, calculate the grams of nitrogen in 125 g of each fertilizer.
a. $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
b. NH_{3}
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
35. Calculate the empirical formula of each compound. (4)
a. $94.1 \% \mathrm{O}, 5.9 \% \mathrm{H}$
b. $79.8 \% \mathrm{C}, 20.2 \% \mathrm{H}$
c. $67.6 \% \mathrm{Hg}, 10.8 \% \mathrm{~S}, 21.6 \% \mathrm{O}$
d. $27.59 \% \mathrm{C}, 1.15 \% \mathrm{H}, 16.09 \% \mathrm{~N}, 55.17 \% \mathrm{O}$
