Name:	Homework was checked against the key with wrong
Chapter 7: Chemical Quantities	answers corrected.
	Parent Signature:
Each numbered question is worth 1 point exc	cept as noted. Total possible = 44 points
Section 7.1	
1. What is the mass of 0.50 bushel of apples	s? 1 dozen apples = 2.0 kg apples = 0.20 bushel (0.5)
2. Assume that a variety of apples has eight sapples? (0.5)	seeds in each. How many apple seeds are in 14 kg of
3. How many moles is 2.80×10^{24} atoms of s	silicon? (0.5)
4. How many molecules is 0.360 mol of water	er? (0.5)
5. How many atoms are there in 1.14 mol SC	O_3 ? (0.5)
6. How many moles are there in 4.65×10^{24}	molecules of NO ₂ ? (0.5)
7. Find the gram molecular mass of each con a. C_2H_6	npound. (2)

b. PCl₃

c. C₃H₇OH

9. Calculate the gram formula mass of each ionic compound. (1.5) a. K_2O b. $CaSO_4$ c. CuI_2

 $d. N_2O_5$

10. Find the gram formula mass of each compound. (1.5) a. barium fluoride
b. strontium chloride
c. skip
d. aluminum sulfite

11. Describe the relationship between Avogadro's number and one mole of any substance.

13. How many oxygen atoms are in a representative particle of each substance? a. ammonium nitrate (NH_4NO_3), a fertilizer

b. acetylsalicylic acid ($C_8H_8O_4$), the fever-reducing compound aspirin?

c. ozone (O_3) , a disinfectant

d. nitroglycerine $(C_3H_5(NO_3)_3)$, an explosive

- 14. How many moles is each of the following? (2) a. 1.50×10^{23} molecules NH₃ (Find moles of NH₃.)
 - b. 1 billion (1 x 10^9) molecules O_2 (Find moles of O_2 .)
 - c. 6.02×10^{22} molecules Br₂ (Find moles of Br₂.)
 - d. 4.81×10^{24} atoms Li
- 15. Distinguish among gram atomic mass, gram molecular mass, and gram formula mass.

Section 7.2

- 16. Find the mass, in grams, of each. (1.5)
 - a. 3.32 mol K
 - b. 4.52 x 10⁻³ mol C₂₀H₄₂
 - c. 0.0112 mol K₂CO₃
- 17. Calculate the mass, in grams of 2.50 mol of each substance. (2)
 - a. sodium sulfate
 - b. iron(II) hydroxide

18. Find the number of moles in each quantity. (1.5) a. $3.70 \times 10^{-1} \text{ g B}$ b. 27.4 g TiO₂ c. 847 g (NH₄)₂CO₃ 20. What is the volume at STP of these gases? a. $3.20 \times 10^{-3} \text{ mol CO}_2$ b. 0.960 mole CH₄ $c.\ 3.70\ mol\ N_2$ 21. Assuming STP, how many moles are in these volumes? a. 67.2 L SO₂ b. 0.880 L He

c. 1.00 x 10³ L C₂H₆

22. A gaseous compound composed of sulfur and oxygen that is linked to the formation of acid rain has a density of 3.58 g/L at STP. What is the molar mass of this gas?

23. What is the density of krypton gas at STP? (Hint: Krypton is a noble gas.)
24. Find the mass in grams of each quantity. (2) a. 0.720 mol Be
$b.\ 2.40\ mol\ N_2$
c. $0.160 \text{ mol } H_2O_2$
d. 5.08 mol Ca(NO ₃) ₂
25. Calculate the following. (3) a. The number of molecules in $60.0~g~NO_2$
b. The volume, in liters, of 3.24×10^{22} molecules Cl_2 gas at STP
c. The mass, in grams, of 18.0 L CH_4 gas at STP
26. Would three balloons, each containing the same number of molecules of a different gas at STP, have the same mass or the same volume? Explain.

27. Find the number of moles in each quantity. (2) a. 5.00 g hydrogen molecules
b. 0.000264 g Li ₂ HPO ₄
c. 187 g Al
d. 333 g SnF ₂
Section 7.3
29. Calculate the percent composition for each compound. (2) a. When 9.03 g Mg combines completely with 3.48 g N to form a compound.
b. When 29.0 g Ag combines completely with 4.30 g S to form a compound.
30. When a 14.2 g sample of mercury(II) oxide is decomposed into its elements by heating, 13.2 g Hg is obtained. What is the percent composition of this compound?
31. Calculate the percent composition of these compounds. Give answers to nearest 0.01%. (2) a. ethane (C_2H_6)
b. sodium bisulfate (NaHSO

32. Calculate the percent nitrogen in these common fertilizers. Give answers to the nearest 0.01%. (3)
a. $CO(NH_2)_2$
l. NIII
b. NH ₃
c. NH_4NO_3
33. Using results from Problem 31, calculate the mass of hydrogen in each of the following.
a. $350 \text{ g C}_2\text{H}_6$
b. 20.3 g NaHSO ₄
34. Using results from Problem 32, calculate the grams of nitrogen in 125 g of each fertilizer. a. $CO(NH_2)_2$
b. NH ₃
c. NH ₄ NO ₃

35. Calculate the empirical formula of each compound. (4)

a. 94.1% O, 5.9% H

b. 79.8% C, 20.2% H

c. 67.6% Hg, 10.8% S, 21.6% O

d. 27.59% C, 1.15% H, 16.09% N, 55.17% O