Name:

Chapter 9.1-9.2: Stoichiometry

Homework was checked against the key with wrong answers corrected.

Parent Signature: \qquad
Each numbered question is worth 1 point except as noted. Total possible $=22$ points.

Section 9.1

3. Interpret the equation for the formation of water from its elements in terms of (a) numbers of molecules, (b) numbers of moles, and (c) volumes of gases at STP. (1.5)
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a.
b.
c.
4. Balance the equation for the combustion of acetylene:

$$
\ldots \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Then, interpret the equation in terms of (a) relative numbers of moles, (b) volumes of gases at STP, and (c) masses of reactants and products. (0.5 pts each for (a) and (b), 1 pt for (c))
a.
b.
c.
6. Balance this equation: \qquad $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
a. Interpret the equation in terms of numbers of molecules and numbers of moles. (1)
b. Show that the balanced equation obeys the law of conservation of mass. (2)
8. Interpret the following equation in terms of (a) relative numbers of representative particles (atoms, molecules, or formula units), (b) numbers of moles, and (c) masses of reactants and products. (0.5 pts each for (a) and (b), 1 pt for (c))
$2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
a.
b.
c.

Section 9.2

9. This equation shows the formation of aluminum oxide: $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
a. write out the six mole ratios that can be derived from this equation. (1)
\qquad
b. How many moles of aluminum are needed to form $3.7 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$? (0.5)
10. According to the equation in Problem 9:
a. How many moles of oxygen are required to react completely with 14.8 mol Al ?
b. How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are formed when $0.78 \mathrm{~mol} \mathrm{O}_{2}$ reacts with aluminum?
11. Acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is produced by adding water to calcium carbide $\left(\mathrm{CaC}_{2}\right)$.

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})
$$

How many grams of acetylene are produced by adding water to 5.00 g of CaC_{2} ?
12. Using the same equation from Problem \#11, determine how many moles of CaC_{2} are needed to react completely with $49.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
13. How many molecules of oxygen are produced by the decomposition of 6.54 g of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$?

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

14. The last step in the production of nitric acid is the reaction of nitrogen dioxide with water:

$$
3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})
$$

How many grams of nitrogen dioxide must react with water to produce 5.00×10^{22} molecules of nitrogen monoxide?
15. The equation for the combustion of carbon monoxide is:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

How many liters of oxygen are required to burn 3.86 L of carbon monoxide?
16. Phosphorus and hydrogen can be combined to form phosphine $\left(\mathrm{PH}_{3}\right)$:

$$
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PH}_{3}(\mathrm{~g})
$$

How many liters of phosphine are formed when 0.42 L of hydrogen reacts with phosphorus?
17. Consider this equation:

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Calculate the volume of sulfur dioxide produced when $27.9 \mathrm{~mL} \mathrm{O}_{2}$ reacts with carbon disulfide.
18. From the equation in Problem 17, calculate the number of deciliters of carbon dioxide produced when $0.38 \mathrm{~L} \mathrm{SO}_{2}$ is formed.
19. Isopropyl alcohol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ burns in air according to this equation:
$2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. Calculate the moles of oxygen needed to react with $3.40 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$. (0.5)
b. Find the moles of each product formed when $3.40 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ reacts with oxygen. (1)
22. Tin(II) fluoride, formerly found in many kinds of toothpaste, is formed in this reaction:

$$
\begin{equation*}
\mathrm{Sn}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{~g}) \rightarrow \mathrm{SnF}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \tag{1.5pts}
\end{equation*}
$$

a. How many liters of HF are needed to produce $9.40 \mathrm{~L}^{\text {of } \mathrm{H}_{2} \text { at STP? }}$
b. How many molecules of H_{2} are produced by reaction of tin with 20.0 L HF at STP?
c. How many grams of SnF_{2} can be made by reacting 7.42×10^{24} molecules of HF with tin?

