Name:

Chapter 18: Solutions

Homework was checked against the key with wrong answers corrected.

Parent Signature: \qquad
Each numbered question is worth 1 point except as noted. Total possible $=39$ points

Section 18.1: Properties of Solutions

1.1. Name and distinguish between the two components of a solution. (\#40) (0.5)
1.2. Define solubility, saturated solution, and unsaturated solution. (\#43)
1.3. If a saturated solution of sodium nitrate is cooled, what change might you observe? (\#45) (0.5)
1.4. Can a solution with undissolved solute be supersaturated? Explain. (\#46) (0.5)
1.5. What is the effect of pressure on the solubility of gases in liquids? (\#47) (0.5)

1. The solubility of a gas in water is $0.16 \mathrm{~g} / \mathrm{L}$ at 104 kPa of pressure. What is the solubility when the pressure of the gas is increased to 288 kPa ? Assume the temperature remains constant.
2. A gas has a solubility in water at $0{ }^{\circ} \mathrm{C}$ of $3.6 \mathrm{~g} / \mathrm{L}$ at a pressure of 1.0 atm . What pressure is needed to produce an aqueous solution containing $9.5 \mathrm{~g} / \mathrm{L}$ of the same gas at $0^{\circ} \mathrm{C}$?
3. Name three factors that influence the rate at which a solute dissolves in a solvent.
4. What mass of NaCl can be dissolved in $7.50 \times 10^{2} \mathrm{~g}$ of water at $25^{\circ} \mathrm{C}$? (Hint: Use Figure 18.4.)
5. What could you do to change
a. a saturated solution to an unsaturated solution?
b. an unsaturated solution to a saturated solution?
6. Use the solid substances listed in Table 18.1 on page 504 to make a general statement that relates a change in solubility of a solid to a change in temperature.

Section 18.2: Concentrations of Solutions

2.1. Having a measure of the molarity of a solution is more meaningful than knowing whether a solution is dilute or concentrated. Explain. (\# 49)
2.2. Define molarity. (\# 51) (0.5)
8. A solution has a volume of 2.0 L and contains 36.0 g of glucose. If the molar mass of glucose is $180 \mathrm{~g} / \mathrm{mol}$, what is the molarity of the solution?
9. A solution has a volume of 250 mL , and contains 0.70 mol NaCl . What is its molarity?
10. How many moles of ammonium nitrate are in 335 mL of $0.425 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$?
11. How many moles of solute are in 250 mL of $2.0 \mathrm{M} \mathrm{CaCl}_{2}$? How many grams of CaCl_{2} is this?
12. How many milliliters of a stock solution of 4.00M KI would you need to prepare 250.0 mL of 0.760 M KI ?
13. Suppose you need 250 mL of 0.20 M NaCl , but the only supply of sodium chloride you have is a solution of 1.0 M NaCl . How do you prepare the required solution? Assume that you have the appropriate volume-measuring devices on hand.
14. If 10 mL of pure acetone is diluted with water to a total solution volume of 200 mL , what is the percent by volume of acetone in the solution?
15. A bottle of hydrogen peroxide antiseptic is labeled $3.0 \%(\mathrm{v} / \mathrm{v})$. How many $\mathrm{mL} \mathrm{H}_{2} \mathrm{O}_{2}$ are in a $400.0-\mathrm{mL}$ bottle of this solution?
16. Calculate the grams of solute required to make 250 mL of $0.10 \% \mathrm{MgSO}_{4}(\mathrm{~m} / \mathrm{v})$.
17. A solution contains $2.7 \mathrm{~g} \mathrm{CuSO}_{4}$ in 75 mL of solution. What is the percent (mass/volume) of the solution?
20. Distinguish between percent (v / v) and percent (m / v) solutions.
21. Calculate the molarity of each solution.
a. $400 \mathrm{~g} \mathrm{CuSO}_{4}$ in 4.00 L of solution
b. $0.060 \mathrm{~mol} \mathrm{NaHCO}_{3}$ in 1500 mL of solution
22. You have the following stock solutions available: $2.00 \mathrm{M} \mathrm{NaCl}, 4.0 \mathrm{M}_{\mathrm{KNO}_{3}}$, and 0.50 M MgSO_{4}. Calculate the volumes you must dilute to make the following solutions. (3)
a. 500.0 ml of 0.500 M NaCl
b. 2.0 L of $0.20 \mathrm{M} \mathrm{MgSO}_{4}$
c. 50.0 mL of $0.20 \mathrm{M} \mathrm{KNO}_{3}$
23. What is the concentration, in percent (m / v), of a solution with $75 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}$ in 1500 mL of solution?

Section 18.3: Colligative Properties of Solutions

24. Why does a solution have a lower vapor pressure than the pure solvent of that solution?
25. Why does a solution have an elevated boiling point and a depressed freezing point compared with the pure solvent?
26. Would a dilute or a concentrated sodium fluoride solution have a higher boiling point? Explain.
27. An equal number of moles of KI and MgF_{2} are dissolved in equal volumes of water. Which solution has the higher (1.5)
a. boiling point?
b. vapor pressure?
c. freezing point?

Section 18.4: Calculations Involving Colligative Properties

28. How many grams of sodium fluoride are needed to prepare a 0.400 m NaF solution that contains 750.0 g of water?
29. Calculate the molality of a solution prepared by dissolving 10.0 g NaCl in 600 g of water.
30. What is the boiling point of a solution that contains $1.25 \mathrm{~mol} \mathrm{CaCl}_{2}$ in 1400 g of water?
31. What mass of NaCl would have to be dissolved in $1.000 \times 10^{3} \mathrm{~g}$ of water to raise the boiling point by $2.00^{\circ} \mathrm{C}$?
32. How many kilograms of water must be added to 9.0 g of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ to prepare a 0.025 m solution?
33. One mole of a compound of iron and chlorine is dissolved in 1 kg of water. The boiling point of this aqueous solution is $102.05^{\circ} \mathrm{C}$. the freezing point of this aqueous solution is $-7.44{ }^{\circ} \mathrm{C}$. What is the formula of the solute compound?
34. How are boiling point elevation and freezing point depression related to molality?
35. Estimate the freezing point of a solution of 12.0 g of carbon tetrachloride dissolved in 750 g of benzene (which has a freezing point of $5.48^{\circ} \mathrm{C}$).
